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Abstract. High-quality and long-term soil moisture products are significant for hydrologic monitoring and agri-
cultural management. However, the acquired daily Advanced Microwave Scanning Radiometer 2 (AMSR2) soil
moisture products are incomplete in global land (just about 30 %–80 % coverage ratio), due to the satellite orbit
coverage and the limitations of soil moisture retrieval algorithms. To solve this inevitable problem, we develop a
novel spatio-temporal partial convolutional neural network (CNN) for AMSR2 soil moisture product gap-filling.
Through the proposed framework, we generate the seamless daily global (SGD) AMSR2 long-term soil moisture
products from 2013 to 2019. To further validate the effectiveness of these products, three verification methods
are used as follows: (1) in situ validation, (2) time-series validation, and (3) simulated missing-region validation.
Results show that the seamless global daily soil moisture products have reliable cooperativity with the selected
in situ values. The evaluation indexes of the reconstructed (original) dataset are a correlation coefficient (R)
of 0.685 (0.689), root-mean-squared error (RMSE) of 0.097 (0.093), and mean absolute error (MAE) of 0.079
(0.077). The temporal consistency of the reconstructed daily soil moisture products is ensured with the origi-
nal time-series distribution of valid values. The spatial continuity of the reconstructed regions is in accordance
with the spatial information (R: 0.963–0.974, RMSE: 0.065–0.073, and MAE: 0.044–0.052). This dataset can
be downloaded at https://doi.org/10.5281/zenodo.4417458 (Zhang et al., 2021).

1 Introduction

Surface soil moisture is a crucial Earth land characteristic
in describing the hydrologic cycle system (Wigneron et al.,
2003; Lievens et al., 2015). It can be applied for monitoring
droughts and floods in agriculture (Samaniego et al., 2018)
and geologic hazards (Long et al., 2014). To obtain the global
and high-frequency soil moisture products, many active or
passive satellite sensors have been launched, such as the Ad-
vanced Microwave Scanning Radiometer for Earth Observ-
ing System (AMSR-E), Advanced Microwave Scanning Ra-
diometer 2 (AMSR2), and Soil Moisture Active and Passive

(SMAP), Soil Moisture and Ocean Salinity (SMOS) among
others (McColl et al., 2017; Ma et al., 2019). Nevertheless,
the acquired daily soil moisture products are always incom-
plete in global land (see Fig. 1a, about 30 %–80 % missing
ratio in AMSR2), because of the satellite orbit coverage and
the limitations of soil moisture retrieval algorithms (Cho et
al., 2017; Long et al., 2019). The invalid land regions re-
fer to areas with a gap or missing information. Especially
in the regions close to the Equator, or in the permafrost re-
gion, the degree of missing soil moisture data is more seri-
ous (Zeng et al., 2015; Santi et al., 2018). This phenomenon
greatly disturbs subsequent soil moisture applications, espe-
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cially for the consecutive daily temporal analysis and global
spatial distribution comparisons (Colliander et al., 2017; Liu
et al., 2019).

To reduce this negative effect, most existing works em-
ployed the strategy of multi-temporal soil moisture data
selection, multi-temporal soil moisture data averaging, or
multi-temporal soil moisture data synthesis. Detailed de-
scriptions and analyses of these three strategies (Al Bitar et
al., 2017) are presented as follows.

1. Multi-temporal soil moisture data selection. The crite-
rion of this strategy denotes selection of the highest cov-
erage regions on a single date from multi-temporal soil
moisture products (Wang and Qu, 2009). However, this
assumption can only deal with local regions and is not
applicable for global regions. The main reason is that
almost all the global daily soil moisture products suf-
fer from the defect of missing satellite orbit coverage
and failure of the retrieval algorithm. Multi-temporal
soil moisture data selection strategy greatly reduces the
data utilisation and is not qualified for dense time-series
analysis at daily temporal resolution (Liu et al., 2020;
Purdy et al., 2018).

2. Multi-temporal soil moisture data averaging. This strat-
egy is commonly used for most soil moisture studies or
applications. The incomplete soil moisture products are
overall averaged as the monthly, quarterly, and yearly
results to generate the complete products (Jalilvand et
al., 2019). For most applications and spatial analysis,
this operation can effectively improve the spatial soil
moisture coverage (Zhao et al., 2020). However, it dis-
tinctly sacrifices the high-frequency temporal resolu-
tion as low-frequency temporal resolution, which also
severely reduces the data utilisation. In addition, it ig-
nores the unique spatial distribution of a single day
and loses the dense time-series changing information.
In other words, the monthly, quarterly, and yearly soil
moisture data averaging operations damage the initial
information on both spatial and temporal dimensions.

3. Multi-temporal soil moisture data synthesis. Different
from soil moisture data selection and averaging, this
strategy employs the time-series daily soil moisture data
and selects the valid observed value from correspond-
ing time-series pixels. This strategy can produce syn-
thesis results through valid single points, while it ig-
nores the local spatial correlation and contains discon-
tinuous and inconsistent effects in local regions. In ad-
dition, it also sacrifices high temporal resolution just as
the multi-temporal data averaging strategy does (Peng
et al., 2017; Sun et al., 2020).

To overcome the above-mentioned limitations, some
missing-value reconstruction methods have been developed
in particular for multi-temporal images, thick cloud re-
moval, and deadline gap-filling (Q. Zhang et al., 2020a).

For example, Zhu et al. (2011) proposed the multi-temporal
neighbouring-homologous-value padding method for thick
cloud removal. Chen et al. (2011) presented an effective
interpolating algorithm for recovering the invalid regions
in Landsat images. Zhang et al. (2018a) built an integra-
tive spatio-temporal spectral network for missing data recon-
struction in multiple tasks.

In terms of the soil moisture product gap-filling, sev-
eral methods have also been proposed to address this is-
sue. Wang et al. (2012) presented a penalised least-square
regression-based approach for global satellite soil moisture
gap-filling observation. Fang et al. (2017) introduced a long
short-term-memory network to generate a spatially complete
overlay SMAP in the US. Long et al. (2019) fused multi-
resolution soil moisture products, which can produce daily
fine-resolution data in local regions. Llamas et al. (2020)
used geostatistical techniques and a multiple regression strat-
egy to get spatially complete results of satellite-derived prod-
ucts. Overall, there are few works for soil moisture recon-
struction on global and daily scales.

In spatial dimension, the invalid land areas and adjacent
valid land areas show spatial consistency and spatial corre-
lation for daily soil moisture products (Long et al., 2020). In
temporal dimensions, the daily time-series changing curve of
the same point natively appears with continuous and smooth
peculiarities (Chan et al., 2018). Overall, these methods can
effectively fill the gaps of soil moisture products. How-
ever, these methods cannot simultaneously take both spatial
and temporal information into consideration. In addition, the
daily soil moisture products on a global scale have not been
exploited up to now.

Therefore, how about simultaneously extracting both spa-
tial and temporal features for seamless global daily soil mois-
ture product gap-filling? Recently, deep learning has gradu-
ally revealed the potential for remote sensing products pro-
cessing (Chen et al., 2021). In consideration of the powerful
feature expression ability via deep learning, can we utilise
spatio-temporal information to generate long-term soil mois-
ture products?

From these perspectives, a novel spatio-temporal deep
learning framework is proposed for global daily AMSR2
soil moisture products gap-filling. By means of the pro-
posed method, we can effectively break through the above-
mentioned limitations. And finally, this work generates the
seamless global daily AMSR2 soil moisture long-term prod-
ucts from 2013 to 2019. The main innovations are sum-
marised below.

1. We develop a deep 3D partial reconstruction model,
which can take both the spatial and temporal informa-
tion into consideration. Aiming at the invalid or coast-
line region boundary, the 3D partial CNN and global–
local loss function are presented for better extracting
the valid region features and ignoring the invalid regions
through both soil moisture data and mask information.
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2. A seamless global daily (SGD) AMSR2 soil mois-
ture long-term (2013–2019) dataset is generated
through the proposed model. The dataset includes
the original and reconstructed soil moisture data.
These SGD products could be directly downloaded at
https://doi.org//10.5281/zenodo.4417458 (Zhang et al.,
2021).

3. Three verification strategies are employed to evidence
the precision of our SGD soil moisture dataset as fol-
lows: in situ validation, time-series validation, and sim-
ulated missing-region validation. Evaluation indexes
demonstrate that the seamless global daily AMSR2 soil
moisture dataset shows high accuracy, reliability, and
robustness.

The schema of this work is listed below. Section 2 describes
the ASMR2 soil moisture products and in situ soil mois-
ture network data. Section 3 presents the methodology for
generating the seamless global daily AMSR2 soil moisture
products. Section 4 gives the experimental results and re-
lated validation results. The comparisons between the time-
series averaging method and proposed method are discussed
in Sect. 5. Finally, Sect. 7 lists the conclusions of this study.

2 Data description

2.1 AMSR2 soil moisture products

In consideration of the global coverage, temporal resolu-
tion, and current availability, we select AMSR2 soil mois-
ture products as the focus of this study. This sensor was on
board on the Global Change Observation Mission 1-Water
(GCOM-W1) satellite, launched in May 2012 (Kim et al.,
2015). The released datasets include three passive microwave
band frequencies: 6.9 GHz (C1 band), 7.3 GHz (C2 band,
new frequency compared with AMSR-E), and 10.7 GHz (X
band). It can observe the global land two times within a
day (Wu et al., 2016): ascending (day-time) and descend-
ing (night-time, about 00:00–01:00 of the local time) orbits.
The primary spatial resolution of this dataset denotes 0.25◦

global grids. And the AMSR2 soil moisture retrieval algo-
rithms include the Land Parameter Retrieval Model (LPRM)
and Japan Aerospace Exploration Agency (JAXA) (Du et al.,
2017; Kim et al., 2018). The error of soil moisture for each
frequency was also given in AMSR2 products.

In our study, we choose LPRM AMSR2 descending level
3 (L3) global daily 0.25◦ soil moisture products as the
study data. To avoid introducing additional error and un-
certainty, we did not carry out the downscaling operation
of the generated SGD-SM products. This dataset was ob-
tained from https://hydro1.gesdisc.eosdis.nasa.gov/ (last ac-
cess: 18 June 2020). For instance, the original AMSR2 0.25◦

soil moisture data in 2 April 2019 are displayed in Fig. 1a.
Due to the satellite orbit coverage and limitations of soil
moisture retrieving algorithms in tundra areas (Muzalevskiy

et al., 2020), the acquired AMSR2 daily soil moisture prod-
ucts are always incomplete in global land (about 30 %–80 %
invalid ratio, excluding Antarctica and most of Greenland),
as shown in Fig. 1a. The daily global land coverage ratio of
AMSR2 soil moisture data in 2019 is listed in Fig. 2. Dis-
tinctly, the global land coverage ratio is low in wintertime
and high in summertime. The mean global land coverage
ratio in 2019 is just about 56.5 % in AMSR2 soil moisture
daily products. Apparently, these incomplete soil moisture
data cannot be directly applied for subsequent spatial and
time-series analysis, as mentioned in the previous Sect. 1.

2.2 International Soil Moisture Network in situ data

The International Soil Moisture Network (ISMN) was es-
tablished from 2009 to now (Dorigo et al., 2011), provid-
ing the correction and validation schemes for remote sens-
ing satellite-based soil moisture retrieval. ISMN includes the
globally distributed in situ soil moisture sites supported by
the earth observation of the European Space Agency (ESA)
and many voluntary contributions of researchers and organi-
sations from all over the world (Dorigo et al., 2012, 2013).

The ISMN in situ surface soil moisture values could be
acquired through https://ismn.geo.tuwien.ac.at (last access:
21 July 2020). In our experiments, we selected a portion of
in situ soil moisture sites of ISMN as ground truth values
(Zhang et al., 2017), to testify the precision and credibility of
the reconstructed datasets in Sect. 4.2. The spatial distribu-
tion of the used in situ sites is depicted in Fig. 1b. It should be
noted that the time range is restrained from 1 January 2013
to 31 December 2019. Then the daily soil moisture values
are matched with the in situ sites in the same location. Two
neighbouring in situ hourly values are averaged as the ulti-
mate result of the current date (Dong et al., 2020).

3 Methodology

The flow chart of the presented framework is depicted in
Fig. 3. The overall structure could be divided into two stages:
the training procedure and testing procedure. Firstly, we des-
ignate the processing daily soil moisture data on date T and
simultaneously select its adjacent time-series data before and
after 4 d (date T −4 to T +4). The corresponding land masks
of these daily soil moisture data are generated through the in-
valid pixel marking.

In the training procedure, these spatio-temporal soil mois-
ture data and land mask patch groups are imported as the
training data of the presented spatio-temporal 3-D recon-
struction model through patch selection and mask simula-
tion. The convergence condition denotes that the loss of
the proposed model gradually decreases and finally remains
smooth in the training procedure through back-propagation
(BP) in Fig. 3. Then in the testing procedure, seamless
global daily reconstruction soil moisture data are outputted
through the convergent model. Subsequently, the next daily
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Figure 1. AMSR2 soil moisture product and selected in situ soil moisture sites.

Figure 2. The daily global land coverage ratio of AMSR2 soil
moisture products in 2019.

processing soil moisture data are designated and the above-
mentioned steps are repeated, until all the daily data are se-
rially reconstructed in order. Details of the reconstruction
model and network are described below.

3.1 Spatio-temporal 3-D reconstruction model

The spatio-temporal soil moisture reconstruction model is
displayed in Fig. 4. After assigning the original soil mois-
ture data on date T , time-series soil moisture data and corre-
sponding masks on dates T − 4 to T + 4 are simultaneously
imported as the 3D-tensor inputs of the presented deep recon-
struction model in Fig. 4. In the spatial dimension, missing
and non-missing areas contain spatial consistency in daily
soil moisture data. In the temporal dimension, the daily time-
series changing curve of the same point natively appears with
the continuous and smooth peculiarities. Therefore, the 3D
CNN is employed to process the spatio-temporal soil mois-
ture data in this model. In this way, we can jointly utilise
both spatial and temporal information of these time-series
soil moisture products. Further, it can better exploit the deep

spatio-temporal feature for data reconstruction and model
optimisation. The structure and details are depicted in Fig. 4.

This network includes 11 layers (3D partial CNN unit and
ReLU (rectified linear unit)) in Fig. 4. The size of 3D filters
is all set as 3× 3× 3. The number of feature maps before 10
layers is fixed as 90, and the channel of the feature map in
the final layer is exported as 1. It should be noted that after
finishing each partial 3D-CNN layer, we must update all the
new masks for the next layer. The mask updating operation
is defined in Sect. 3.2. In terms of the model training and op-
timisation, three steps, patch selecting, mask simulating, and
back propagation, are performed in Sect. 3.3. Detailed tech-
nique descriptions of the network implementation are pro-
vided in the Supplement. For network optimisation, we take
the global loss and local loss into consideration. As described
in Fig. 3, this deep reconstruction model needs to learn with
large training label samples, before the testing procedure for
outputting global seamless daily soil moisture products. The
global land mask and the mask on the current date T are also
employed for the global loss and local loss in Fig. 4. Descrip-
tions of partial 3D-CNN and model optimisation are demon-
strated in Sect. 3.2 and 3.3, respectively.

3.2 Partial convolutional neural network

Deep convolution neural network have been widely applied
for nature image reconstruction (Liu et al., 2018a; Yeh et al.,
2017; Liu et al., 2019) and satellite imagery recovery (Yuan
et al., 2019; Zhang et al., 2019; Q. Zhang et al., 2020b). Nev-
ertheless, it should be highlighted that valid and invalid pix-
els simultaneously exist, especially around coastal regions
and gap regions (Pathak et al., 2016). The common CNN ig-
nores the location information of invalid or valid pixels in
soil moisture data, which cannot eliminate the invalid infor-
mation (Liu et al., 2018b). Therefore, to solve this negative
effect, we have developed the partial 3D-CNN to ignore the
invalid information in the proposed reconstruction model.
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Figure 3. Flow chart of the presented framework.

Figure 4. Spatio-temporal soil moisture 3D reconstruction model.

Before introducing the partial convolution, the operation
of common convolution can be defined as below:

x =WTX+ b, (1)

where X denotes the input tensor data. W and b are the
weight and bias parameters, respectively. Different from the
common convolution, the mask information M of the cor-
responding soil moisture data is introduced into the partial

convolution:

x′ ={
WT (X(w,h,t)�M(w,h,t))

‖1(w,h,t)‖1
‖M(w,h,t)‖1

+ b,
∥∥M(w,h,t)

∥∥
1 6= 0

0, otherwise
, (2)

where � stands for the pixel-wise multiplication. w, h, and t
refer to the width, height, and temporal number of the input
data, respectively. 1 denotes the identical dimension tensor

https://doi.org/10.5194/essd-13-1385-2021 Earth Syst. Sci. Data, 13, 1385–1401, 2021



1390 Q. Zhang et al.: Generating SGD-SM AMSR2 products

with mask M, whose elements are all a value of 1. Obvi-
ously, the partial convolutional output x′ is only decided by
the valid soil moisture pixels of input X, rather than the in-
valid soil moisture pixels. Through the mask M, we can ef-
fectively exclude the interference information of invalid soil
moisture pixels such as marine regions and gap regions. Then
the scaling divisor in Eq. (2) further adjusts for the variational
number of valid soil moisture pixels.

After finishing each partial convolution layer, all the masks
need to be updated through the following rule: if the partial
convolution can generate at least one valid value of the output
result, then we mark this location as a valid value in the new
masks. This updating operation is demonstrated as below:

m′(w,h,t) =

{
Land(w,h) · 1,

∥∥M(w,h,t)
∥∥

1 6= 0
0, otherwise

, (3)

where Land(w,h) is the global land mask at the location (w,h)
of the global soil moisture product. This global land mask
covers six continents and excludes Antarctica and most of
Greenland.

3.3 Model training and optimisation

As shown in Fig. 3, the training procedure needs to generate
large numbers of training samples for learning the proposed
spatio-temporal 3-D reconstruction model in Fig. 4. Different
from the testing procedure, the training procedure addition-
ally contains the patch selection, mask simulation, and back
propagation (BP) steps. These three steps are significant for
model training and optimisation. The purpose of the patch
selection and mask simulation steps in Fig. 3 is to establish
the label (complete) data (incomplete) training samples in the
deep learning framework. The significance of the BP step in
Fig. 3 is to optimise the reconstruction network in Fig. 4 and
acquire the loss convergence model for testing use.

In the patch selection step, we traverse the global regions
on date T to select the complete soil moisture patch label,
whose local land regions are undamaged. It should be noted
the other incomplete patches on date T are excluded be-
cause they cannot participate in the supervised learning. The
corresponding time-series soil moisture patches of this se-
lected patch between date T − 4 and T + 4 are set as the
spatio-temporal 3D data patch groups. And their correspond-
ing masks between dates T −4 and T +4 are set as the spatio-
temporal 3D mask patch groups. After traversing the origi-
nal global daily AMSR2 soil moisture products from 2013 to
2019, we finally establish the spatio-temporal data and mask
patch groups with 276 488 patches. The soil moisture patch
size is fixed as 40× 40 for patch selection.

In the mask simulation step, 10 000 patch masks of the
size 40×40 are chosen from the global AMSR2 soil moisture
masks from 2013 to 2019. The missing ratio range of these
masks is set as [0.3, 0.7]. Then these patch masks are ran-
domly selected for label patch use within the spatio-temporal
data and mask patch groups. The complete patch on date T

(label) is simulated as the incomplete patch (data) through
the above mask. And the original corresponding mask of this
patch also needs to be replaced. After traversing and building
the label data 3D spatio-temporal patch groups, this dataset
is set as the training sample for use of the reconstruction net-
work in Fig. 3.

In the back propagation step, we need a loss function to it-
eratively optimise the learning parameters of the deep recon-
struction network. This operation follows the chain rule in
model optimising. The Euclidean loss function is employed
in most data reconstruction or regression issues based on
deep learning, such as satellite product downscaling (Fang
et al., 2020) and retrieval (Lee et al., 2019). Nevertheless,
Euclidean loss function only pays attention to the holistic in-
formation bias for network optimisation. It ignores the soil
moisture particularity of the local areas, especially in lo-
cal coastal, mountain, and hinterland regions. However, this
particularity is extremely significant for invalid region gap-
filling, because of the spatial heterogeneity in soil moisture
products. Therefore, to take both the global consistency and
local soil moisture particularity into consideration, the global
land mask and current mask on date T are both employed af-
ter the final layer as shown in Fig. 3. Further, the reconstruc-
tion network presents the local and global two-norm loss as
below:

ζlocal = ‖(1−MT )� (SMrec−SMori)‖22, (4)

ζglobal = ‖MG� (SMrec−SMori)‖22, (5)

where MT stands for the current mask patch on date T . MG
represents the corresponding global land mask patch. SMrec
and SMori denote the reconstructed soil moisture patch and
original seamless soil moisture patch, respectively. The uni-
fied loss function of the reconstruction network combines
ζlocal and ζglobal as below:

ζ (2)= ζlocal+ η · ζglobal, (6)

where 2 refers to the learnable arguments for each layer of
the deep reconstruction model. η denotes the balancing fac-
tor to adjust the ζlocal and ζglobal. In this work, we fixed this
factor as 0.1 during the training procedure.

After building up this unified loss function, the presented
reconstruction model employs the Adam algorithm as the
gradient descent strategy. The number of batch sizes in this
model is fixed as 128 for network training (Shi et al., 2020).
The total epochs and initial learning rate are determined as
300 and 0.001, respectively. Starting every 30 epochs, the
learning rate is degraded through a decay coefficient of 0.5
(Zhang et al., 2018b). The training and testing procedure of
the proposed model are implemented by the PyTorch plat-
form. The software environment is listed as follows: Python
3.7.4 language, Windows 10 operating system, and PyCharm
2019 integrated development environment (IDE). The final
soil moisture products are exported as a hierarchical data for-
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mat, which contains both the original and reconstructed soil
moisture data.

4 Experimental results and validation

In this section, we provide the experimental results and
related validation results to testify the availability of the
presented framework. Through this framework, we finally
generate the seamless global daily AMSR2 soil mois-
ture long-term products from 1 January 2013 to 31 De-
cember 2019. The daily soil moisture products are saved
in NetCDF4 format. This dataset can be directly down-
loaded at https://doi.org/10.5281/zenodo.4417458 (Zhang et
al., 2021) for free use. Codes are released at https://github.
com/qzhang95/SGD-SM (last access: 27 February 2021).

We firstly give two sample seamless reconstruction results
of global time-series soil moisture products. The original and
reconstructed results are both given for comparisons. Later,
to further validate the effectiveness of these products, three
verification methods are employed as follows:

1. in situ validation,

2. time-series validation, and

3. simulated missing-region validation.

In situ validation is utilised to compare the reconstructed soil
moisture with original AMSR2 soil moisture through the se-
lected in situ sites from the spatial prospect. In situ shallow-
depth soil moisture sites can be employed as the ground truth
to validate the reconstruction satellite soil moisture prod-
ucts. Time-series validation is employed for evaluating the
time-series continuity from the temporal prospect. Soil mois-
ture time-series scatter can obviously reveal the annual peri-
odic variations for time-series validation. Simulated missing-
region validation is used to evidence the soil moisture con-
sistency from the spatial prospect. It can verify the spatial
consistency between the valid and invalid soil moisture re-
gions.

4.1 Experimental results

As displayed in Figs. 5a–h and 6a–h, original and recon-
structed global daily time-series AMSR2 soil moisture prod-
ucts between 1–4 June 2019 and 1–4 October 2016 are given
as the sample results, respectively. The left column lists
the original incomplete soil moisture results, and the right
column lists the corresponding complete soil moisture re-
sults after reconstruction by the proposed method from 1 to
4 June 2019 and 1 to 4 October 2016. We ignore the cover-
age of Antarctica and most of Greenland, because the satel-
lite soil moisture data within these regions are perennially
missing.

From the spatial dimension, the reconstructed global soil
moisture products are consistent between invalid regions and

Table 1. Comparisons between original and reconstructed soil
moisture products.

Soil moisture products Evaluation index

R RMSE MAE

Original 0.689 0.093 0.077
Reconstructed 0.685 0.097 0.079

their adjacent valid regions in Figs. 5 and 6. Especially
around the high-value areas and low-value areas, the spa-
tial information is consecutive without obvious reconstruc-
tion boundary effects such as in Africa, Australia, and Eu-
rope in Figs. 5 and 6.

From the temporal dimension, although the incomplete
time-series daily results are highly similar and correlative,
there are still some variations and differences between each
other. The proposed method performs well when preserving
consistent temporal information and predicting specific tem-
poral information in Figs. 5 and 6.

4.2 In situ validation

In situ shallow-depth soil moisture sites can be employed as
the ground truth to validate the reconstructed satellite soil
moisture products. We select 113 soil moisture stations (0–
5 cm) through ISMN between 1 January 2013 and 31 De-
cember 2019. Nine in situ soil moisture sites and the corre-
sponding reconstruction data within invalid regions are then
contrasted as the scatter plots in Fig. 7a–i, respectively. The
horizontal axis stands for the in situ soil moisture value.
Meanwhile the vertical axis represents the reconstructed soil
moisture value. It should be highlighted that due to the lack
of recorded data between 2013 and 2019, most in situ val-
ues are incomplete with different point numbers. As shown
in Fig. 7a–i, the correlation coefficient (R) indexes are dis-
tributed between 0.679 and 0.754. The root-mean-square er-
ror (RMSE) and mean absolute error (MAE) indexes are dis-
tributed from 0.026 to 0.134 and from 0.021 to 0.107, respec-
tively.

In addition, we compare the reconstructed with original
AMSR2 soil moisture products through the selected 113 in
situ sites, as listed in Table 1. The averaged R, RMSE, and
MAE of the original and reconstructed soil moisture prod-
ucts are 0.685 (0.689), 0.097 (0.093), and 0.079 (0.077), re-
spectively. Overall, the accuracy of reconstructed soil mois-
ture products is generally accorded with the original prod-
ucts. The differences of these indexes R, RMSE, and MAE
are minor between the original and reconstructed soil mois-
ture results in Table 1. To some degree, this validation en-
sures the reliability and availability of the proposed seamless
global daily AMSR2 soil moisture products. In addition, the
in situ validation results in the Tibetan Plateau region (Qiu et
al., 2020; P. Zhang et al., 2020) are listed in the Supplement.
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Figure 5. Original and reconstructed global daily SM results between 1 and 4 June 2019.

4.3 Time-series validation

To further validate the reconstructed soil moisture results,
time-series variations in both original and reconstructed
results are stacked in six points around the six conti-
nents: Africa (0.375◦ N, 36.875◦ E), Europe (49.375◦ N,
35.125◦ E), Asia (38.125◦ N, 117.375◦ E), North Amer-
ica (39.875◦ N, 106.125◦W), South America (15.125◦ S,
52.625◦W), and Australia (30.125◦ S, 150.375◦ E). As de-

scribed in Fig. 8a–f, the horizontal axis stands for the daily
time-series date between 1 January 2013 and 31 Decem-
ber 2019. The vertical axis represents the soil moisture value.
The blue points refer to the original valid soil moisture daily
results, and the red forks stand for the reconstructed invalid
soil moisture daily results in Fig. 8.

As depicted in Fig. 8a–f, most of the soil moisture time-
series scatters can obviously reveal the annual periodic varia-
tions. The reconstructed soil moisture results generally show
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Figure 6. Original and reconstructed global daily SM results between 1 and 4 October 2016.

a fine temporal consistency with the original soil moisture
results in different areas. Related low soil moisture values
mostly existed in the drought season of winter with frozen
lands such as in Fig. 8d. Related high soil moisture values
were mainly generated in the moist season of summer with
more rainy days, especially in Fig. 8b, d, and f.

Overall, compared with the whole original variation ten-
dency between 2013 and 2019, the generated long-term
seamless global daily AMSR2 soil moisture products can

steadily reflect the temporal consistency and variation. This
is significant for time-series applications and analysis. This
daily time-series validation also demonstrates the robustness
of the presented method and the availability of the estab-
lished seamless global daily products.
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Figure 7. Scatters of the in situ reconstructed soil moisture values within selected COsmic-ray Soil Moisture Observing System (COSMOS)
stations.

4.4 Simulated missing-region validation

In addition to the time-series consistency in Sect. 4.3, the
spatial continuity is also important for the reconstructed
seamless soil moisture products. Therefore, to further evi-
dence this key point, we carry out the simulated missing-
region validation in this subsection. Based on the original
soil moisture products, six simulated square missing regions
are performed on six continents. In this way, we can easily
compare the reconstructed SM regions with original SM re-
gions, to validate the 2D spatial continuity of the proposed
SGD-SM products. We select four dates of the long-term soil
moisture products: 25 July 2013, 25 July 2015, 25 July 2017,
and 25 July 2019 as the simulated objects. For example,
original and reconstructed results with simulated missing re-
gions in 25 July 2019 are depicted in Fig. 9a and b, re-
spectively. The simulated missing regions can be clearly ob-
served in Fig. 9a around the six continents. Detailed origi-
nal and reconstructed spatial information of four simulated

patches in 25 July 2015 are displayed in Fig. 10. Table 2
gives the evaluation index (R, RMSE, MAE) of the simulated
patches between 2013 and 2019. Then the original recon-
structed scatters of simulated regions in 2013, 2015, 2017,
and 25 July 2019 are listed in Fig. 11a–b, respectively.

As shown in Fig. 9a and b, the reconstructed invalid re-
gions are consecutive between the original valid regions. And
in the simulated missing regions, the spatial texture informa-
tion is also continuous without obvious boundary reconstruc-
tion effects in Fig. 9b. To better distinguish the spatial de-
tails of reconstructed soil moisture, we select four enlarged
patches in simulated regions in Fig. 10. It can be clearly ob-
served that the reconstructed patches perform with high con-
sistency with the original patches, as displayed in Fig. 10.

In addition, the reconstructed soil moisture patches in sim-
ulated missing regions show high reconstruction accuracy,
whose R values are distributed between 0.963 and 0.974 in
Table 2 and Fig. 11a–d. RMSE and MAE values also perform
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Figure 8. Original and reconstructed time-series results in selected regions.

well with 0.065 to 0.073 m3/m3 and 0.044 to 0.052 m3/m3 in
Table 2 and Fig. 11a–d, respectively. Overall, this simulated
missing-region validation manifests the reconstruction abil-
ity of spatial information continuity.

5 Discussion

5.1 Comparisons with time-series averaging

As mentioned in Sect. 1, some simple strategies such as time-
series averaging can also be employed for synthesising the
complete soil moisture products. Therefore, we perform the
comparisons between the time-series averaging approach and
the presented method, to further validate the effectiveness
and rationality of our dataset and framework. In terms of
the time-series averaging method, it averages the time-series

Table 2. Evaluation indexes of the simulated patches between 2013
to 2019.

Year
Evaluation index

R RMSE MAE

2013 0.974 0.065 0.044
2014 0.963 0.073 0.052
2015 0.968 0.069 0.050
2016 0.972 0.067 0.046
2017 0.966 0.070 0.049
2018 0.970 0.065 0.046
2019 0.969 0.069 0.048
Average 0.968 0.068 0.471
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Figure 9. Original and reconstructed results with simulated missing regions in 25 July 2019.

daily soil moisture data to reconstruct gap regions. The orig-
inal soil moisture result, time-series averaging result, and the
proposed reconstruction result on 10 September 2016 are
shown in Fig. 12a–c, respectively. Three reconstructed re-
gions are marked with a black circle in Fig. 12b and c. The
evaluation index comparisons between the time-series av-
eraging method and proposed method are listed in Table 3
through the corresponding in situ data validations.

As displayed in the black circled regions of Fig. 12b and
c, we can clearly distinguish the spatial discontinuity in the

Table 3. Evaluation index (R, RMSE, MAE) comparisons between
the time-series averaging and proposed method. The better indexes
are marked in bold.

Method
Evaluation index

R RMSE MAE

Time-series averaging 0.635 0.124 0.093
Proposed 0.708 0.085 0.066
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Figure 10. Detailed original and reconstructed spatial information of four simulated patches on 25 July 2015.

Figure 11. Original and reconstructed scatter of simulated regions in 2013, 2015, and 2017 and on 25 July 2019.

time-series averaging result. Reversely, the proposed method
performs better on spatial continuity between the valid and
invalid regions. The evaluation indexes R, RMSE, and MAE
also manifest the superiority of the presented approach, com-
pared with the time-series averaging method in Table 3. The
main reason is that daily soil moisture products show tempo-
ral differences, and the time-series averaging strategy cannot
use the 2D spatial information and ignores these temporal
differences. Therefore, it reflects the obvious “boundary dif-

ference effect”, especially in the circled regions of Fig. 12b.
This also reveals the limitations and shortages of the time-
series averaging method. Conversely, the proposed method
jointly utilises both spatial and temporal information of these
time-series soil moisture products. Further, it can better ex-
ploit the deep spatio-temporal feature for soil moisture data
reconstruction. Overall, this discussion demonstrates the su-
periority of the proposed framework for daily time-series
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Figure 12. Original and time-series averaging and proposed global soil moisture results on 10 September 2016.

product reconstruction, especially compared with the time-
series averaging strategy.

5.2 Uncertainty analysis of the SGD-SM products

Uncertainty analysis is important for quantitative remote
sensing products. The uncertainties in this generated SGD-
SM product can be classified as three types: (1) the errors
of the original AMSR2 SM product, (2) the meteorological
factors such as precipitation and snowfall, and (3) the gener-
alisation of the proposed reconstruction model. Detailed de-
scriptions of these three uncertainties are listed as follows.

1. The errors of original AMSR2 SM product. The pro-
posed SGD-SM product is generated based on the orig-
inal AMSR2 SM product. This original AMSR2 SM
product also contains errors, due to the satellite sen-
sor imaging and SM retrieval algorithm. As shown in
Table 1, the R, RMSE, and MAE evaluation indexes
of the original AMSR2 SM product are 0.687, 0.095,
and 0.078, respectively. These errors are also inevitably
transmitted into the generated SGD-SM product.

2. The meteorological factors. SGD-SM relies on the tem-
poral continuity and spatial consistency for daily SM
gap-filling. Nevertheless, if the unusual meteorology
occurs in a single day, such as precipitation and snow-
fall, it may destroy the above assumption and influence

the reconstruction effects. This uncertainty can be no-
ticed in time-series validation, especially for the rainy
season.

3. The generalisation of the proposed reconstruction
model. In this work, we train the proposed network
through selecting complete soil moisture patches. In ad-
dition, the simulated masks are also chosen from the
daily soil moisture products. However, there are still
differences between the training data and testing data,
such as land cover type, mask size, and so on. This un-
certainty may disturb the generalisation of the proposed
reconstruction model, to some degree.

6 Data availability

This dataset can be downloaded at
https://doi.org/10.5281/zenodo.4417458 (Zhang et al.,
2021).

7 Conclusions

In this work, aiming at the spatial incompleteness and tem-
poral discontinuity, we generate a seamless global daily
(SGD) AMSR2 soil moisture long-term product from 2013
to 2019. To jointly utilise spatial and temporal information, a
novel spatio-temporal partial CNN is proposed for AMSR2
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soil moisture product gap-filling. The partial 3D-CNN and
global–local loss function are developed for better extract-
ing valid region features and ignoring invalid regions through
data and mask information. Three validation strategies are
employed to testify the precision of our seamless global
daily products as follows: (1) in situ validation, (2) time-
series validation, and (3) simulated missing-region valida-
tion. Evaluation results demonstrate that the seamless global
daily AMSR2 soil moisture dataset shows high accuracy, re-
liability, and robustness.

Although the proposed framework performs well when
generating this seamless global daily soil moisture dataset,
some drawbacks and limitations still need to be overcome,
especially on multi-source data fusion, spatio-temporal in-
formation extraction, and deep learning model optimisation.
In our future work, we will introduce multi-source informa-
tion fusion into the proposed model, such as precipitation and
snowfall. The proposed reconstruction model will be increas-
ingly improved by means of more powerful units and struc-
tures. In addition, we will consider more soil moisture prod-
ucts in our future work such as AMSR-E, SMOS-IC, SMAP,
and so on.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-13-1385-2021-supplement.
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